欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

无偏置支持向量回归优化问题
作者:赵银亮;丁晓剑 作者单位:西安交通大学电子与信息工程学院,陕西西安710049;信息系统工程重点实验室,江苏南京210007 加工时间:2014-05-15 信息来源:《软件学报》
关键词:偏置;支持向量回归;有效集;泛化性能
摘 要:为了研究偏置对支持向量回归(support vector regression,简称SVR)问题泛化性能的影响,首先提出了无偏置SVR(NBSVR)的优化问题及其对偶问题.推导出了NBSVR优化问题全局最优解的必要条件,然后证明了SVR的对偶问题只能得到NBSVR对偶问题的次优解.同时提出了NBSVR的有效集求解算法,并证明了它是线性收敛的.基于21个标准数据集的实验结果表明,在对偶问题解空间上,有偏置支持向量回归算法只能得到无偏置支持向量回归算法的次优解,NBSVR的均方根误差要低于SVR.NBSVR的训练时间不仅低于SVR,而且对核参数变化不太敏感.
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服