欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

可伸缩算法用于人口基因组推理

Scalable Algorithms for Population Genomic Inference

作者:Sara Sheehan 作者单位:Electrical Engineering and Computer Sciences University of California at Berkeley 加工时间:2015-07-07 信息来源:EECS 索取原文[104 页]
关键词:DNA测序;人口基因组;可伸缩算法
摘 要:In this thesis we present two novel algorithms that make use of DNA sequencing data in a principled yet practical way. The fi rst method estimates the history of eff ective population sizes of a species using a coalescent hidden Markov model (HMM). Previous coalescent HMMs could only handle a few sequences, since the set of coalescent trees makes the statespace prohibitively large. Our algorithm uses a modifi ed state-space to make inference computationally feasible while still retaining the essential genealogical features of a sample. We apply this algorithm, called diCal, to human data to learn more about major events in human history, such as the out-of-Africa migration. We also provide several extensions to diCal that make the computation faster, more automated, and applicable in a wider variety of scenarios.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服