欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

使用动态批量调整大小的自适应流处理

Adaptive Stream Processing using Dynamic Batch Sizing
作者:Tathagata Das;Yuan Zhong;Ion Stoica;Scott Shenker 加工时间:2014-07-18 信息来源:EECS 索取原文[31 页]
关键词:大数据;流处理;集群发展分布
摘 要:The need for real-time processing of “big data” has led to the development of frameworks for distributed stream processing in clusters. It is important for such frameworks to be robust against variable operating conditions such as server failures, changes in data ingestion rates, and workload characteristics. To provide fault tolerance and efficient stream processing at scale, recent stream processing frameworks have proposed to treat streaming workloads as a series of batch jobs on small batches of streaming data. However, the robustness of such frameworks against variable operating conditions has not been explored.
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服