如何打造新展会经济——以2011~2015年中国成都“汽车音乐节”为例
关键词:系统工程;;SOC估计;;人工免疫粒子滤波;;纯电动汽车;;锂离子动力电池
摘 要:准确预测电池的荷电状态(SOC)对纯电动汽车的安全可靠的运行具有重要意义.标准的粒子滤波算法对锂离子动力电池的非线性特征有一定的适应性,能够对电池的SOC做出估计.但是在标准粒子滤波运算过程中普遍存在粒子退化现象,导致算法效率和预测精度降低.因此,本文提出一种新的人工免疫粒子滤波算法,将人工免疫算法的原理引入标准粒子滤波算法的粒子更新过程中,对锂离子动力电池SOC的估计进行优化,以提高SOC估计的准确性.利用北京市实际运营的纯电动汽车电池数据,对所提出的电池SOC算法进行实证研究.实验结果表明,相对于标准粒子滤波算法,人工免疫粒子滤波算法能够增加粒子的多样性,具有更好的SOC预测精度和有效性.