欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

IIWPSO-PNN在化工过程故障诊断中的应用
作者:谭莉;于春梅; 加工时间:2017-08-08 信息来源:自动化仪表
关键词:概率神经网络;故障诊断;平滑参数;惯性权重;粒子群算法;田纳西-伊斯曼;化工过程
摘 要:概率神经网络(PNN)已成功应用于化工过程故障诊断。在概率神经网络中,平滑参数对网络性能有很大的影响,并且很难确定。因此,采用粒子群优化(PSO)算法,寻找最优平滑参数。针对粒子群优化算法中线性变化的惯性权重易使其陷入局部极值问题,采用非线性变化的惯性权重替代线性变化的惯性权重,并将其应用于改进惯性权重粒子群(IIWPSO)算法。将IIWPSO算法应用于概率神经网络中(即IIWPSO-PNN),使其自动搜索并寻找最优的平滑参数用于概率神经网络的训练和测试。与前人提出的线性变化惯性权重、两种非线性变化的惯性权重(分别记为w_1、w_2和w_3)进行比较,将w_1、w_2和w_3应用于PSO-PNN中(分别记为PSOPNN1、PSO-PNN2和PSO-PNN3)。最后将IIWPSO-PNN应用于田纳西-伊斯曼过程中,与PNN、PSO-PNN、PSO-PNN1、PSOPNN2和PSO-PNN3网络进行比较。试验结果表明:IIWPSO-PNN在解决故障诊断问题时,识别率与收敛速度都有较大的提高。试验结果验证了IIWPSO-PNN算法应用于化工过程的可行性和有效性。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服