欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

演化超网络在多类型癌症分子分型中的应用
作者:王进;丁凌;孙开伟;李钟浩; 作者单位:计算智能重庆市重点实验室(重庆邮电大学);韩国仁荷大学信息与通信工程系; 加工时间:2013-12-20 信息来源:电子与信息学报
关键词:模式识别;;机器学习;;演化超网络;;微阵列;;癌症多类型分类
摘 要:该文提出一种用于多类型癌症分子分型的演化超网络模式识别方法。首先采用"一对多"方法,将一个多类分型问题转化为多个二类分型问题;然后利用信噪比方法对DNA微阵列数据进行信息基因选择;经过超网络对训练集的演化学习,构造一系列二类分类器并进行集成,最终构建一个多类型癌症分型系统并对待测样本进行分类。对急性白血病、儿童小圆蓝细胞肿瘤和GCM数据集实验结果表明:演化超网络留一交叉验证(LOOCV)识别率分别为:98.61%,100%和85.35%。演化超网络有利于挖掘癌症相关基因,具有良好的学习结果可读性。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服