欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

PCA联合子空间理论的规范化与扩展
作者:徐斌;马尽文; 作者单位:北京大学数学科学学院信息科学系和数学及其应用教育部重点实验室; 加工时间:2013-12-20 信息来源:信号处理
关键词:主成分分析(PCA);;贝叶斯分类;;联合子空间
摘 要:对于高维数据的分类,主成分分析(PCA)联合子空间可为每类数据建立更为细致的概率模型,从而可有效地提高贝叶斯分类的准确性。本文首先对PCA联合子空间理论进行了规范化,提出了两个基本假设,并从理论上证明了残差子空间参数"代表特征根"的启发式取值正是其极大似然估计。本文进一步对样本残差的概率模型进行了扩展,提出了扩展型逐类联合子空间算法。最后,本文通过在真实数据上实验结果证明了扩展型逐类联合子空间算法的优越性。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服