关键词:压缩感知;语音信号;线性预测;过完备字典
摘 要:基于语音信号帧内样值间的相关性和冗余域的稀疏性,针对采用离散余弦转换矩阵及基追踪方法对压缩感知采样语音进行重构时,语音稀疏性不够好导致大压缩比采样后重构效果差的缺点,提出采用过完备线性预测字典做转换矩阵,用基追踪重构算法对压缩感知采样语音进行高质量重构.该方法预先由训练语音的预测系数聚类构造过完备字典,不需要测试语音的预测系数;基于过完备线性预测字典重构信号性能良好.对利用基追踪重构的语音进行了主客观评价,得出结论:同样的观测数目下,基于过完备线性预测字典比基于离散余弦变换矩阵压缩感知采样语音重构信噪比高出3 ~8 dB.