关键词:BP神经网络;萤火虫算法;结构熵权法;动态权值;威胁评估
摘 要:针对传统超视距空战威胁评估不能根据各类威胁因素的变化动态调整其对应权值的问题,引入前向反馈(back propagation,BP)神经网络,采用综合考虑主客观因素的结构熵权法确定各威胁指数权值并作为神经网络训练参数进行训练,提出了改进萤火虫算法(improved glowworm swarm optimization,IGSO)和BP神经网络相结合的空战动态权值计算方法。该算法采用改进萤火虫算法优化BP网络的权值和阈值,优化后的BP网络能更好地计算不同态势下的威胁指数权值,从而根据威胁估计模型进行威胁评估。以某一时刻预测多无人机空中对抗时的威胁度为想定,分别采用结构熵权法和IGSO-BP进行...
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取