欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于数学形态学和模糊聚类的旋转机械故障诊断
作者:王书涛;张金敏;李圆圆;张淑清 作者单位:燕山大学电气工程学院 河北省测试计量技术及仪器重点实验室 秦皇岛 066004 加工时间:2014-01-15 信息来源:《仪器仪表学报》
关键词:数学形态学;GG模糊聚类;分形维数;形态谱;形态谱熵;故障诊断
摘 要:提出了一种数学形态学与GG (Gath-Geva)模糊聚类相结合的旋转机械故障诊断方法,通过对滚动轴承信号的多尺度形态运算得到信号的形态谱,定量反映了信号在不同尺度下的形态变化特征.为进一步对滚动轴承信号进行故障识别,提取出基于形态学操作的分形维数和描述不同信号形态特征的指标即形态谱墒,并把这2个参数作为GG聚类的故障特征向量,进行聚类分析,同时对GG聚类与FCM(fuzzy center means)聚类和GK (Gustafaon-Kessel)聚类进行了比较.实验证明了基于数学形态学与GG聚类相结合的机械故障诊断方法的有效性,且证明了GG聚类更适合对不同形状、大小和密度的空间故障数据模糊聚类,聚类效果更好.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服