欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

Reaction-Diusion系统复杂的领域的一个稳定的非负不变的数值解算法

A Stable Algorithm for Non-Negative Invariant Numerical Solution of Reaction-Diffusion Systems on Complicated Domains
作者:Insoon Yang 作者单位:Electrical Engineering and Computer Sciences University of California at Berkeley 加工时间:2014-02-22 信息来源:EECS 索取原文[51 页]
关键词:扩散系统;非负变量算法;数值方法求解系统
摘 要:We present a Cartesian grid nite di erence numerical method for solving a system ofreaction-di usion initial boundary value problems with Neumann type boundary conditions.The method utilizes adaptive time-stepping, which guarantees stability and non-negativityof the solutions. The latter property is critical for models in biology where solutions rep-resent physical measurements such as concentration. The level set representation of theboundary enables us to handle domains with complicated geometry with ease. We pro-vide numerical validation of our method on synthetic and biological examples. Empiricaltests demonstrate second order convergence rate in the L1- and L2-norms, as well as in theL1-norm for many cases.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服