关键词:故障诊断;局部线性嵌入;长短时记忆神经网络;化工过程
摘 要:针对化工生产过程数据多样性、高维性以及相似性的特点,传统的局部线性嵌入难以发掘数据高维非线性、不均匀特征的问题,本文提出一种改进LLE-LSTM算法。首先,运用改进LLE算法求出样本集的协方差矩阵,计算权重系数矩阵,将样本集映射到低维空间。其次,将重构的低维样本集输入LSTM模型,进一步提取样本特征。最后,对故障类型进行诊断和分类。将该方法应用到田纳西-伊斯曼(TE)过程,实验结果表明该方法具有更高的准确性和优越性。
内 容:原文可通过湖北省科技资源共享服务平台(https://www.hbsts.org.cn/)获取