基于支持向量机和卡尔曼滤波的机械零件剩余寿命预测模型研究
关键词:机械零件;;剩余寿命;;支持向量机;;非线性卡尔曼滤波;;置信区间
摘 要:现有机械零件剩余寿命预测模型在建模过程中,无法同时采用已有数据库数据及被预测产品实时退化数据,为了弥补其不足,提出一种支持向量机(SVM)和非线性卡尔曼滤波相结合的机械零件剩余寿命预测模型。根据现有全寿命试验数据训练所得的SVM回归模型,建立非线性卡尔曼滤波状态更新方程,依据机械零件退化特征构造时间更新方程,设定初始剩余寿命值及其方差,通过逐步迭代计算各时刻剩余寿命估计值及一定置信水平的置信区间。该计算模型能够充分利用现有零件与同类零件全寿命试验数据和被预测零件的实时状态退化数据,实现剩余寿命预测。以某型号滚动轴承为例,验证了所提出剩余寿命预测模型的精度、稳定性及工程应用价值。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取