欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

稀疏主成分分析的算法与应用

Sparse Principal Component Analysis: Algorithms and Applications
作者:Youwei Zhang 作者单位:Engineering - Electrical Engineering and Computer Sciences, University of California, Berkeley 加工时间:2014-03-14 信息来源:EECS 索取原文[78 页]
关键词:稀疏主成分分析;二维对称主成分分析;区域共坐标上升算法;共坐标上升算法;文本数据分析;半定松弛
摘 要:In this dissertation, we first discuss several formulations for Sparse PCA, as well as the algorithms for solving the formulations and a few greedy methods. We then develop a block coordinate ascent algorithm for solving DSPCA with better dependence on problem size. We show that our algorithm converges much faster than the existing first-order algorithm in practice and demonstrate that our code can handle huge real data sets. We also demonstrate that Sparse PCA does bring more interpretability and hence gives rise to new interesting findings in various real data sets.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服