关键词:机组组合;双重粒子群优化;分时段;临界算子;罚函数
摘 要:为了更经济快速地解决机组组合问题,提出一种改进双重粒子群优化(particle swarm optimization,PSO)算法,包含离散部分和连续部分.离散PSO分时段优化机组的启停状态,在种群更新时加入了临界算子,改进了可行解的判别条件,各机组出力最低值的和要在一定程度上低于负荷需求值,并考虑机组启停时间的向前继承和向后约束.连续PSO用于启停状态确定过程中和确定后的负荷分配,考虑功率平衡约束、热备用约束和机组的出力上下限约束.求解经济负荷分配时,利用罚函数的方法满足机组的爬坡速率约束,最后得到煤耗最小值.采用2个24时段的算例进行仿真,实验结果表明新算法减少了搜索量,提高了收敛速度,并为机组组合问题提出了新思路.