关键词:自回归移动平均优化模型;神经网络;激活函数;人工蜂群算法;模糊消除
摘 要:为了克服图像模糊消除算法不稳定与解模糊等难题,保证复原图像的细节信息清晰完整,并提高算法的运行效率,获取实时性,提出了神经网络融合自回归移动平均模型的图像模糊消除并行稳定机制。引入神经网络,基于突触权重系数,构造激活函数;再嵌入人工蜂群算法(Artificial Bees Colony,ABC),并以神经网络的均方误差函数设计适应度方程,由ABC算法训练神经网络,利用优化后的神经网络来获取自回归移动平均模型的参数;再将自回归移动平均优化模型引入模糊图像,以同时识别模糊函数与模糊图像;并对模糊函数进行相关定义,以消除算法不稳定性与解模糊问题;再对模糊图像进行反卷积,消除模糊。借助仿真实验来测试该...
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取