关键词:态势预测;高斯过程;萤火虫群;粒子群;人工蜂群
摘 要:针对共轭梯度法获取高斯过程超参数存在迭代次数难以确定及预测不精准等问题,提出一种萤火虫群算法优化高斯过程的预测方法,并将其应用于网络安全态势预测研究。采用萤火虫群优化算法对高斯过程超参数进行智能寻优,建立基于高斯过程回归的网络安全态势预测模型。实验结果表明新方法的平均相对预测误差较共轭梯度法、粒子群优化算法和人工蜂群优化算法分别降低了近29.46%、10.37%和4.22%,且新方法收敛较快。另外,分析对比了3种单一类型和2种复合类型的协方差函数对高斯过程预测的影响,实验结果表明采用神经网络与有理二次的复合协方差函数(neural network and rational quadratic ...
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取