关键词:机动目标;常加速模型;AUPF算法;强跟踪滤波;复合K噪声
摘 要:针对复合K噪声下机动目标跟踪系统具有强非线性非高斯的特点,提出了一种自适应无迹粒子滤波(Adaptive Unscented Particle Filter,AUPF)算法.该算法建立在常加速模型及其改进滤波算法基础上,并将无迹卡尔曼滤波(Unscented Kalman Filter,UKF)与强跟踪滤波(Strong Tracking Filter,STF)算法相结合作为提议分布,提高了系统跟踪一般机动和阶跃机动的能力.在给出复合K噪声模型的基础上,利用AUPF算法对几种典型机动目标进行了计算机仿真,并同无迹粒子滤波(Unscented Particle Filter,UPF)算法进行了比较.仿真结果表明,复合K噪声下AUPF算法能更有效地对各种机动目标进行跟踪,具有较高的跟踪精度.