卡尔曼滤波修正LS-SVM的刀具磨损识别技术研究
关键词:刀具状态监测;小波分析;支持向量机;卡尔曼滤波
摘 要:针对刀具磨损状态先验样本少和常规神经网络识别模型收敛速度慢、易陷入局部极小值等问题,提出了基于最小二乘支持向量机(LS-SVM)的刀具磨损量识别技术,并针对模型输出存在系统误差而降低刀具磨损量识别精度的问题,引入卡尔曼滤波算法对时序监测结果进行修正,实现小样本下的刀具磨损量的精确识别。以车削加工为研究对象,采集加工过程中的切削力信号,应用小波包分析技术提取反映刀具磨损状态的特征信息,作为LS-SVM的输入样本,并对模型进行学习训练,完成对刀具磨损状态的识别,最后采用卡尔曼滤波修正其时序监测结果。实验结果表明:LS-SVM模型能高效地实现刀具磨损量识别,需样本数较少,训练速度快,通过卡尔曼滤波修...
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取