欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于OS-ELM的风机关键机械部件故障诊断方法
作者:占健;吴斌;王加祥;余建波; 加工时间:2016-08-05 信息来源:机械制造
关键词:风力发电机;在线贯序极限学习机;故障诊断
摘 要:针对传统故障诊断中前馈神经网络算法诊断效果不佳、泛化能力不强问题,提出了基于在线贯序极限学习机(OS-ELM)的风机关键机械部件故障诊断方法。该方法将测试得到的预测样本加入训练样本,作为下一次的更新信息,建立在线贯序极限学习机诊断模型,从而最大限度提高故障诊断精度,分析了激活函数、隐层节点数目对诊断性能的影响,并同BP神经网络、SVM以及ELM神经网络进行对比。实验表明,该方法在风机关键机械部件出现故障情况下,OS-ELM网络能够作出准确诊断且性能明显优于BP神经网络,与SVM、ELM故障分类准确率相当,但极大地提高了运算速度,便于工程应用。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服