欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于改进的PSO方法的分散OS-CFAR系统的参数优化

Parameter Optimization of decentralized OS-CFAR system Based modified PSO method

作者:Panzhi LiuRuoyu PanGuofang Guo 加工时间:2014-07-20 信息来源:科技报告(Other) 索取原文[6 页]
关键词:恒虚警比(CFAR)检测;分布有序统计恒虚警比(OS-CFAR)检测器;非线性优化;粒子群优化
摘 要:For decentralized ordered statistics (OS) constant false alarm ration (CFAR) detection system,the parameter estimation and performance analysis in complicated detection condition is a typical nonlinear optimization problem.Owing to the nonlinear property of distributed OS-CFAR detection system,it is seriously difficult to obtain optimal threshold values using some optimization method at the fusion center.This paper provides a novel solution based on an effective and flexible particle swarm optimization (PSO) algorithm.As a novel evolutionary computation technique,PSO has attracted much attention and wide applications,owing to its simple concept,easy implementation and quick convergence.Using this approach,all system parameters can be optimized simultaneously.The simulation results show that the proposed approach can achieve effective performances with the above method.
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服