欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

玉米品种图像识别中的影响因素研究
作者:韩仲志;李言照;杨锦忠 作者单位:青岛农业大学理学与信息科学学院,青岛266109;青岛农业大学农学与植物保护学院,青岛266109 加工时间:2014-01-15 信息来源:《中国粮油学报》
关键词:玉米种子;品种识别;独立分量分析;主分量分析;支持向量机
摘 要:为了研究玉米品种图像识别中的关键影响因素,搭建了一套基于PCA和ICA特征提取和支持向量机(SVM)分类算法的玉米品种识别系统,采用扫描仪获得了11个品种每个品种50粒图像,基于图像的像素特征和统计特征,分别研究了主分量分析(PCA)和独立分量分析(ICA)的特征提取和特征优化方法,并进一步考察了支持向量机(SVM)模式分类过程中的关键参数优化问题.试验结果表明,对11个品种550个籽粒的品种最高检出率为97.17%,在同样的情况下ICA优化的特征较PCA优化的特征识别率能提高3%左右,适当选择统计特征比使用像素特征识别率提高约10%,另外SVM参数影响到识别效果,但整体影响不大.本方法与结论对玉米种子纯度和品种真实性检验具有积极意义.
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服