欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

使用FPGA来模拟大规模的新型数据中心网络架构

Using FPGAs to Simulate Novel Datacenter Network Architectures At Scale
作者:Zhangxi Tan 作者单位:Electrical Engineering and Computer Sciences 加工时间:2013-11-08 信息来源:EECS 索取原文[138 页]
关键词:网络基础设施;网络评估;模拟集群
摘 要:The tremendous success of Internet services has led to the rapid growth of Warehouse-Scale Computers (WSCs). The networking infrastructure has become one of the most vital components in a datacenter. With the rapid evolving set of workloads and software, evaluating network designs really requires simulating a computer system with three key features: scale, performance, and accuracy. To avoid the high capital cost of hardware prototyping, many designs have only been evaluated with a very small testbed built with off-the-shelf devices, often running unrealistic microbenchmarks or traces collected from an old cluster. Many evaluations assume the workload is static and that computations are only loosely coupled with the very adaptive networking stack. We argue the research community is facing a hardware-software co-evaluation crisis.In this dissertation, we propose a novel cost-efficient evaluation methodology, called Datacenter-in-a-Box at Low cost (DIABLO), which uses Field-Programmable Gate Arrays (FPGAs) and treats datacenters as whole computers with tightly integrated hardware and software. Instead of prototyping everything in FPGAs, we build realistic reconfigurable abstracted performance models at scales of O(10,000) servers. Our server model runs the full Linux operating system and open-source datacenter software stack, including production software such as memcached. It achieves two orders of magnitude simulation speedup over software-based simulators. This speedup enables us to run the full datacenter software stack for O(100) seconds of simulated time. We have built a DIABLO prototype of a 2,000-node simulated cluster with runtime-configurable 10 Gbps interconnect using 6 multi-FPGA BEE3 boards.
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服