欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

非凸正规化M估计的局部最优条件

Local Optima of Nonconvex Regularized M-Estimators

作者:Po-Ling Loh 作者单位:University of California at Berkeley 加工时间:2013-11-22 信息来源:EECS 索取原文[68 页]
关键词:局部最优;理论模型;目标函数;线性模型
摘 要:We establish theoretical results concerning all local optima of various regularized M- estimators, where both loss and penalty functions are allowed to be nonconvex. Our results show that as long as the loss function satis es restricted strong convexity and the penalty function satis es suitable regularity conditions, any local optimum of the composite objective function lies within statistical precision of the true parameter vector. Our theory covers a broad class of nonconvex objective functions, including corrected versions of the Lasso for error-in-variables linear models; regression in generalized linear models using nonconvex regularizers such as SCAD and MCP; and graph and inverse covariance matrix estimation. On the optimization side, we show that a simple adaptation of composite gradient descent may be used to compute a global optimum up to the statistical precision stat in log(1=stat) iterations, which is the fastest possible rate of any rst-order method. We provide a variety of simulations to illustrate the sharpness of our theoretical predictions.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服