欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

随机稀疏矩阵的通信优化并行乘法

Communication Optimal Parallel Multiplication of Sparse Random Matrices
作者:A. Buluc B. Lipshitz G. Ballard J. Demmel L. Grigori 加工时间:2014-10-27 信息来源:科技报告(AD) 索取原文[19 页]
关键词:算法;乘法;稀疏矩阵;通信
摘 要:Parallel algorithms for sparse matrix-matrix multiplication typically spend most of their time on inter-processor communication rather than on computation, and hardware trends predict the relative cost of communication will only increase. Thus, sparse matrix multiplication algorithms must minimize communication costs in order to scale to large processor counts. In this paper, we consider multiplying sparse matrices corresponding to Erdos-Renyi random graphs on distributed-memory parallel machines. We prove a new lower bound on the expected communication cost for a wide class of algorithms. Our analysis of existing algorithms shows that, while some are optimal for a limited range of matrix density and number of processors, none is optimal in general. We obtain two new parallel algorithms and prove that they match the expected communication cost lower bound, and hence they are optimal.
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服