欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于广义回归神经网络的旋转机械振动特征预测
作者:陈东超;徐婧;洪瑞新;顾煜炯;何成兵; 加工时间:2016-08-05 信息来源:汽轮机技术
关键词:旋转机械;振动;预测;广义回归神经网络
摘 要:提出了一种基于广义回归神经网络(GRNN)模型的旋转机械振动特征预测策略,给出了一种快速的GRNN模型平滑参数的优选方法;采用滑动窗口的方法更新训练样本,以便在每步预测之前获得能反应振动最新变化趋势的网络结构,进而提高预测精度。将该方法应用于某600MW核电机组动静碰摩故障下的振动特征预测,并与粒子群算法优化的支持向量回归模型(PSO-SVM)、径向基函数神经网络(RBFNN)模型的预测结果进行了对比分析,结果表明:提出的振动预测模型的总体性能优于PSO-SVM、RBFNN模型,在学习样本数目较少的情况下也能够得到较为满意的预测结果。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服