欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

用于自动驾驶汽车的深度学习技术介绍
作者:李升波;张航; 加工时间:2022-07-24 信息来源:建设科技
关键词:智能汽车;神经网络;深度学习;环境感知;自主决策;运动控制
摘 要:智能化是汽车的三大变革技术之一。深度学习(Deep Learning,DL)具有拟合能力优、表征能力强和适用范围广的特点,是进一步提升汽车智能性的重要途径。本文总结了用于自动驾驶汽车的深度学习技术,包括发展历史、主流算法以及感知、决策与控制技术应用。首先回顾深度学习的历史及现状,总结神经网络的“神经元-层-网络”三级结构,重点介绍卷积网络和循环网络的特点以及代表性模型。其次阐述以反向传播为核心的深度网络训练算法,列举用于深度学习的常用数据集与开源框架,概括网络计算平台和模型优化设计技术。最后讨论深度学习在自动驾驶汽车的环境感知、自主决策和运动控制三大方向的应用现状及其优缺点,具体包括物体检测和语义分割、分解式和端到端决策、汽车纵横向运动控制等,针对用于自动驾驶汽车的深度学习技术,指明了不同问题的适用方法以及关键问题的未来发展方向。
内 容:原文可通过湖北省科技信息共享服务平台(http://hbstl.hbstd.gov.cn/webs/homepage.jsp)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服