多样性引导的改进量子粒子群优化算法及其在干式空心电抗器优化设计中的应用
关键词:干式空心电抗器;优化设计;量子粒子群优化算法;多样性;混沌变异
摘 要:针对量子粒子群优化(quantum-behaved particle swarm optimization,QPSO)算法在求解复杂问题时的早熟收敛现象,提出了多样性引导的改进量子粒子群优化(diversity-guided modified QPSO,DGMQPSO)算法。该算法对基于混合概率分布的QPSO算法进行了扩展,利用群体多样性信息来引导粒子的搜索,即当群体的多样性小于下限值时,对全局最优粒子的位置进行混沌变异,从而提高群体的多样性,增强算法跳出局部最优解的能力;另外,还分析了采用不同混沌随机序列变异对优化设计结果的影响。对50 kvar干式空心电抗器的优化设计表明,DGMQPSO算法具有较强的全局搜索能力、较好的稳定性和良好的优化效果。