关键词:真空阀;PNN神经网络;故障分类;自动调试;遗传算法
摘 要:针对真空阀检测中可能出现的故障情形及相应的调试方法,提出一种基于遗传PNN神经网络的真空阀自动调试系统。将不同占空比电源驱动下出气口的压力作为故障特征值,并利用PNN网络进行故障分类,结合机械手臂进行相应的调试,从而实现故障自动检测与调试。在样本数有限的情况下,PNN神经网络通过遗传算法获得模式层最佳节点数目及相应的平滑参数,降低了网络的冗余度并提高了网络的精度,再将通过PNN分类并调试成功的数据加入到样本集中重新训练网络,直到网络精度增长率达到一定范围,使得网络的精度和模式层节点数达到最优值。测试结果表明,该方法能够有效的对真空阀进行故障分类与调试,能大幅提高检测的自动化程度和精度。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取