基于KFCM和改进CV模型的海面溢油SAR图像分割
关键词:海面溢油检测;SAR图像;图像分割;核模糊C均值聚类;Chan-Vese模型
摘 要:图像分割是合成孔径雷达(synthetic aperture radar,SAR)图像海面溢油检测的关键步骤之一,将核模糊C均值(kernel fuzzy Cmeans,KFCM)聚类方法及Chan-Vese (CV)模型应用于海面溢油SAR图像分割,为了解决单一KFCM方法分割精度不够高,及传统CV模型对初始条件敏感和收敛速度低的问题,提出了一种基于KFCM和改进CV模型的海面溢油SAR图像分割方法.首先利用KFCM算法将海面溢油SAR图像从原始样本空间映射到高维特征空间,得到聚类结果;然后将其作为CV模型的初始条件,以降低CV模型对初始条件的敏感性,并利用图像边缘强度取代传统CV模型中的Dirac函数,以提高模型的收敛速度和对不同SAR图像的适应性.大量实验结果表明,所提出的基于KFCM和改进CV模型的海面溢油SAR图像分割方法具有分割精度高、运算速度快的优点.