欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

多功能纱线织物的能源应用

Multifunctional Yarns and Fabrics for Energy Applications (NBIT Phase 2)

作者:Baughman, R. H.; Kim, S. J. 加工时间:2015-09-01 信息来源:科技报告(AD) 索取原文[6 页]
关键词:碳纳米管;碳丝;能源;面料;电化学
摘 要:The project focus on developing biscrolled carbon nanotube yarns and textiles for supercapacitor/battery and fuel cell electrode applications was chosen because of the urgent need for improved technologies for electrical energy storage and fuel-cell-based electrical energy generation. Project provided advances are in electrode electrochemical performance, mechanical robustness, and mechanical flexibility that can enable (1) giant power and energy densities; (2) multifunctional applicability where electrode strength and flexibility is utilized, like for energy storage in structural vehicle panels and electronic textiles; (2) deployability for both ultra-large and very small devices; (3) elimination of noble metal catalysts from fuel cell electrodes; and (4) the ability to harvest and store electrical energy in the human body. Woven textiles that are high performance biofuel cells and redox supercapacitors resulted from program work. While project focus was on fuel cell and energy storage electrodes based on biscrolled yarns, collaborative US- Korea project research has also provided advances in fabrication, process upscale, and in experimental and theoretical understanding of structure and properties that are important for all applications of biscrolled yarns. Major project advances in the energy area have also been made on artificial muscles and associated textiles that can be electrically, chemically, or photonically driven, as well as super-tough yarns that can absorb about 6 times higher energy before rupture than spider silk. Some of these artificial muscles can harvest energy from the environment to provide powerful large-stroke actuation. These project advances could not have been made without the realized highly effective partnership of the laboratories of the US and Korea PI's.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服