欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

新图架构HPC机器的有效软件设计和开发

Effective Software Design and Development for the New Graph Architecture HPC Machines
作者:Dechev, D. 作者单位:Sandia National Labs., Albuquerque, NM.;Department of Energy, Washington, DC. 加工时间:2013-10-08 信息来源:科技报告(DE) 索取原文[41 页]
关键词:电子信息;软件;设计;架构;多核处理器;算法;数据结构
摘 要:Software applications need to change and adapt as modern architectures evolve. Nowadays advancement in chip design translates to increased parallelism. Exploiting such parallelism is a major challenge in modern software engineering. Multicore processors are about to introduce a significant change in the way we design and use fundamental data structures. In this work we describe the design and programming principles of a software library of highly concurrent scalable and nonblocking data containers. In this project we have created algorithms and data structures for handling fundamental computations in massively multithreaded contexts, and we have incorporated these into a usable library with familiar look and feel. In this work we demonstrate the first design and implementation of a wait-free hash table. Our multiprocessor data structure design allows a large number of threads to concurrently insert, remove, and retrieve information. Non-blocking designs alleviate the problems traditionally associated with the use of mutual exclusion, such as bottlenecks and thread-safety. Lock-freedom provides the ability to share data without some of the drawbacks associated with locks, however, these designs remain susceptible to starvation. Furthermore, wait-freedom provides all of the benefits of lock-free synchronization with the added assurance that every thread makes progress in a finite number of steps. This implies deadlock-freedom, livelock-freedom, starvation-freedom, freedom from priority inversion, and thread-safety. The challenges of providing the desirable progress and correctness guarantees of wait-free objects makes their design and implementation difficult. There are few wait-free data structures described in the literature. Using only standard atomic operations provided by the hardware, our design is portable; therefore, it is applicable to a variety of data-intensive applications including the domains of embedded systems and supercomputers. Our experimental evaluation shows that our hash table design outperforms the most advanced locking solution, provided by Intel's TBB library, by 22.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服