欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

布卢姆Cookies:无用户跟踪网络搜索个性化

Bloom Cookies: Web Search Personalization without User Tracking

作者:Nitesh Mor 作者单位:Electrical Engineering and Computer Sciences University of California at Berkeley 加工时间:2015-07-04 信息来源:EECS 索取原文[17 页]
关键词:噪声注入;轮廓概括;网络搜索;个性化
摘 要:We propose Bloom cookies that encode a user’s profile in a compact and privacy-preserving way, without preventing online services from using it for personalization purposes. The Bloom cookies design is inspired by our analysis of a large set of web search logs that shows drawbacks of two profile obfuscation techniques, namely profile generalization and noise injection, today used by many privacy-preserving personalization systems. We find that profile generalization significantly hurts personalization and fails to protect users from a server linking user sessions over time. Noise injection can address these problems, but only at the cost of a high communication overhead and a noise dictionary generated by a trusted third party. In contrast, Bloom cookies leverage Bloom filters as a privacy-preserving data structure to provide a more convenient privacy, personalization, and network efficiency tradeoff: they provide similar (or better) personalization and privacy than noise injection (and profile generalization), but with an order of magnitude lower communication cost and no noise dictionary. We discuss how Bloom cookies can be used for personalized web search, present an algorithm to automatically configure the noise in Bloom cookies given a user’s privacy and personalization goals, and evaluate their performance compared to the state-of-the-art.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服