通过表面增强拉曼光谱和荧光光谱成像来映射制药和生物样品的化学和结构成分
Mapping Chemical and Structural Composition of Pharmaceutical and Biological Samples by Raman, Surface-Enhanced Raman and Fluorescence Spectral Imaging
关键词:医药;药品;拉曼成像;化学成分
摘 要:Raman spectroscopy is an analytical technique recognised for its structural and conformational specificity. The efficient discrimination of molecular species by Raman is particularly potent for multidimensional microscopic imaging of complex biological environment, as demonstrated in the present book. The commonly admitted problem of Raman, low sensitivity, can often be circumvented due to high output instruments and via approaches like RRS (resonance Raman scattering), SERS (surface-enhanced Raman scattering), TERS (tip-enhanced Raman scattering) or CARS (coherent anti-Stokes Raman scattering). In contrast to the latter, RRS and SERS are realizable with less sophisticated set-up based on common Raman systems. Although more invasive than RRS, SERS provides better sensitivity and quenching of fluorescence. SERRS (surface-enhanced resonance Raman scattering) spectroscopy can be used in coupling with fluorescence and competes in selectivity and sensitivity with spectrofluorimetry. In the chapter below, we use recent applications made in our group to illustrate the use of Raman and SERRS spectral imaging for characterization of biological samples (animal subcutaneous tissue, human cancer cells) and pharmaceutical samples (microparticles for drug delivery, fibres for wound dressing). After a brief description of experimental details on spectral imaging, the chapter will focus on results concerning (i) biocompatible pharmaceutical materials made of alginates and (ii) anticancer drugs in pharmaceutical forms and in biological systems.