欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

视觉基础贝叶斯词汇学习

Visually-Grounded Bayesian Word Learning
作者:Yangqing Jia;Joshua Abbott;Joseph Austerweil;Thomas Griffiths;Trevor Darrell 作者单位:University of California, Berkeley 加工时间:2013-11-20 信息来源:EECS 索取原文[11 页]
关键词:机器学习系统;贝叶斯模型;视觉刺激
摘 要:We present a system for learning nouns directly from images, using probabilistic predictions generated by visual classifiers as the input to Bayesian word learning, and compare this system to human performance in an automated, large-scale experiment. The system captures a significant proportion of the variance in human responses. Combining the uncertain outputs of the visual classifiers with the ability to identify an appropriate level of abstraction that comes from Bayesian word learning allows the system to outperform alternatives that either cannot deal with visual stimuli or use a more conventional computer vision approach.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服