关键词:无线发射器;毫米波CMOS;峰值平均功率比(PAPR)
摘 要:This dissertation investigates the challenges of designing efficient mm-wave transmitters for both long range and short range applications,and proposes concepts and techniques that can potentially break the barriers imposed by the low cost digital CMOS process. The scope of investigation and proposal extends from the architecture level down to the transistor level. Specifically, on-chip and spatial power combining techniques are analyzed and implemented to achieve larger transmitter Equivalent Isotropically Radiated Power (EIRP). To enhance the average efficiency for modulated signals with high Peak-to-Average-Power-Ratio (PAPR), a direct digital-to-RF conversion architecture is proposed and implemented, enabling dynamic DC power scaling. Finally, a Quadrature Spatial Combining concept is introduced to eliminate the tradeoff between low insertion loss and high isolation present in a traditional Cartesian architecture with on-chip signal combiners. Prototype chips are fabricated and tested in 65nm CMOS technology to verify the proposed architectures and techniques.