关键词:旋转机械;故障诊断;模糊隶属度;模糊支持向量机
摘 要:针对旋转机械故障诊断中采集到的振动信号存在强烈噪声及野值干扰,故障特征提取后,利用传统的支持向量机(support vector machine,SVM)进行模式识别会造成最优超平面的模糊性,影响分类效果,引入模糊C均值聚类算法(fuzzy C-means,FCM)与支持向量机结合进行故障诊断.FCM用来求解样本模糊隶属度,但其迭代求解聚类中心及样本模糊隶属度矩阵时容易陷入局部最优,而粒子群算法(particle swarm optimization,PSO)具有全局优化搜索的优点.基于此,提出了基于改进模糊支持向量机(fuzzy support vector machine,FSVM)的旋转...
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取