欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

Shark::SQL和大规模地丰富分析

Shark: SQL and Rich Analytics at Scale

作者:Reynold Shi Xin Joshua Rosen Matei Zaharia Michael Franklin Scott Shenker Ion Stoica 作者单位:University of California at Berkeley 加工时间:2013-11-18 信息来源:EECS 索取原文[13 页]
关键词:Shark;数据分析系统;内存抽象;大型集群分析;故障容限性能
摘 要:Shark is a new data analysis system that marries query processing with complex analytics on large clusters. It leverages a novel distributed memory abstraction to provide a unified engine that can run SQL queries and sophisticated analytics functions (e.g., iterative machine learning) at scale, and efficiently recovers from failures mid-query. This allows Shark to run SQL queries up to 100× faster than Apache Hive, and machine learning programs up to 100× faster than Hadoop. Unlike previous systems, Shark shows that it is possible to achieve these speedups while retaining a MapReduce-like execution engine, and the fine-grained fault tolerance properties that such engines provide. It extends such an engine in several ways, including column-oriented in-memory storage and dynamic mid-query replanning, to effectively execute SQL. The result is a system that matches the speedups reported for MPP analytic databases over MapReduce, while offering fault tolerance properties and complex analytics capabilities that they lack.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服