关键词:大数据;LSTM;RNN;MSE;SVR;价格指数预测
摘 要:由于钢铁价格具有影响因子难以确定和非线性的特点,在数据挖掘预测分析是,传统的预测方法只能够对钢铁价格进行小数据量的分析,导致预测精度低、速度慢且效率低下。随着大数据的深入研究,将神经网络与spark相结合,能满足用户对实时数据处理的需求。在多个深度学习神经网络模型中,基于长短期记忆单元(Long Short-term memory,LSTM)的递归神经网络(recurrent neural network,RNN)模型因为其能有效利用序列数据中长距离依赖信息的能力,非常适用于价格指数的预测中。文章利用python和lstm,结合近几年钢铁交易价格的走势数据,对数据进行回归拟合,生成训练模型,然后将得出的模型用来对未来的钢铁交易价格进行预测,使用均方误差(MSE)对预测数据和原始数据进行误差分析与处理,并与支持向量回归(SVR)模型进行对比。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取