欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

使用移动传感器进行车辆分类

Vehicle Classification Using Mobile Sensors

作者:Ban, X.; Sun, Z. 作者单位:Rensselaer Polytechnic Inst., Troy, NY. Dept. of Civil Engineering.; University Transportation Research Center, Region 2, City College of New York, NY. 加工时间:2015-08-05 信息来源:科技报告(DE) 索取原文[47 页]
关键词:汽车;汽车分类;传感器
摘 要:In this research, the feasibility of using mobile traffic sensors for binary vehicle classification on arterial roads is investigated. Features (e.g. speed related, acceleration/deceleration related, etc.) are extracted from vehicle traces (passenger cars, trucks) collected from real world arterial roads. Machine learning techniques such as support vector machines (SVM) are developed to distinguish passenger cars from trucks using these features. To address privacy concerns, classification is conducted using long vehicle traces and short vehicle traces separately. For classification using long traces, the proportions of accelerations and decelerations larger than 1mpss and the standard deviations of accelerations and decelerations are the most effective features. By classifying general trucks from passenger cars, the average misclassification rate for the best 4-feature SVM model is about 1.6% for the training data, and 4.2% for the testing data. For classification using short traces, it is necessary to define multiple types of traces and analyze them case-by-case. It was found that particularly for the turning movement traces, features such as average speed, standard deviation of speed, maximum acceleration/deceleration and standard deviation of acceleration/deceleration are fairly effective to classify vehicles. The misclassification rate for the best SVM classifier using short traces is about 14.8% for the stop-and-go traffic, and 15.6% for the non-stopped traffic.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服