欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

二部图中A重量和尺度算法珉成本不完全匹配问题

A Weight-Scaling Algorithm for Min-Cost Imperfect Matchings in Bipartite Graphs

作者:Ramshaw, Lyle; Tarjan, Robert E. 作者单位:HP Laboratories 加工时间:2014-02-18 信息来源:HP 索取原文[25 页]
关键词:分配问题;不完善匹配;最低成本匹配;不平衡的二分图;重量缩放算法
摘 要:Call a bipartite graph G=(X,Y;E) balanced when |X|=|Y| Given a balanced bipartite graph G with edge costs, the assignment problem asks for a perfect matching in G of minimum total cost. The Hungarian Method can solve assignment problems in time space O(m) and time O(mn + n^2 log n), where n :=|X|=|Y| and m :=|E|. If the edge weights are integers bounded in magnitude by C > 1, then algorithms using weight scaling, such as that of Gabow and Tarjan, can lower the time to O(m sqrt(n) log(nC)).There are important applications in which G is unbalanced, with not equal to and we require a min-cost matching in G of size r := min(|X|, |Y|) or, more generally, of some specified size s <= r. The Hungarian Method extends easily to find such a matching in time O(ms + s^2 log r), but weight-scaling algorithms do not extend so easily. We introduce new machinery that allows us to find such a matching in time O(m sqrt(s) log(sC)) via weight scaling. Our results provide some insight into the design space of efficient weight-scaling matching algorithms.These ideas are presented in greater depth in HPL-2012-40R1.
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服