关键词:城市交通;车厢满载率;组合模型;实时估算;大数据
摘 要:针对公交监测和调度中要求实时掌握车厢满载率,以及"一票制"无法获取乘客下车信息等问题,构建基于数据驱动的组合模型,在乘客上车时即推断其出行OD站点,进而融合多源数据实现车厢满载率的实时估算。提出以K近邻算法为组合模型的核心,针对K近邻推断率过低等问题,研究在更大空间维度分析乘客出行规律并推断下车站点的方法,有效提升历史数据的利用率和下车站点的推断率;此外,针对偶发型乘客缺少历史规律数据的情况,充分利用站点下车客流量先验概率随机分配,实现电子支付乘客OD的全样本推断。利用跟车调查法对不同线路、不同班次的车厢拥挤度进行验证。结果表明,模型计算结果与实际结果相符,能够反映出不同线路、不同站段之间的车厢拥挤水平变化。
内 容:原文可通过湖北省科技信息共享服务平台(http://hbstl.hbstd.gov.cn/webs/homepage.jsp)获取