欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于孪生网络的旋转机械故障诊断方法
作者:李迎秋; 周威; 郝德成 加工时间:2024-03-26 信息来源:组合机床与自动化加工技术
关键词:孪生网络;故障诊断;卷积神经网络;注意力机制
摘 要:针对实际工况下旋转机械故障样本稀缺,传统深度学习方法在小样本情况下出现欠拟合的问题,提出一种基于孪生网络(siamese network)的旋转机械故障诊断方法。首先,对有限的故障样本进行交叉配对,构造相同类别与不同类别的故障输入样本,实现对数据样本量的大幅扩容;然后,针对小样本问题构造了包含两个子模型的孪生网络,其中子模型由卷积神经网络与自注意力机制构建而成,通过计算样本之间的欧式距离得到相似度参数;最后,将相似度参数输入自建损失函数和故障分类器实现故障识别。实验证明,所以提出的网络能够依靠少量样本完成故障诊断,在样本数量相同的情况下,故障识别准确率显著高于其他深度学习模型。
内 容:原文可通过湖北省科技资源共享服务平台(https://www.hbsts.org.cn/)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服