欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于词亲和度的微博词语语义倾向识别算法
作者:唐浩浩;王波;周杰;陈东;刘绍毓; 加工时间:2015-01-15 信息来源:数据采集与处理
关键词:微博;情感词;情感分析;语义倾向;词亲和度
摘 要:准确识别词语语义倾向并构建高质量的情感词典,从而提高微博文本情感分析的准确率,具有重要意义。传统的基于语料库方法对种子词选取敏感,并且不能有效对低频词语语义倾向进行识别。本文提出了一种基于词亲和度的微博词语语义倾向识别算法。利用词性组合模式提取候选词集,选取微博表情符号作为种子词,并构建词亲和度网络,利用同义词词林对低频词进行扩展,计算候选词与种子词之间语义倾向相似度。根据设定阈值判断词语语义倾向。在200万条微博语料上分别将本文算法与传统算法进行对比,实验结果表明本文算法优于传统算法。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服