关键词:柔性关节;强化学习;高斯过程;高效学习
摘 要:为提高空间机械臂自主操作能力,满足在多种不确定场景下的智能化精细操作需要,本文提出一种基于概率推断式强化学习的关节控制方法,在传统关节控制的基础上实现了控制参数的自主学习与优化.该方法主要包含两层循环,外循环通过学习交互数据在线辨识关节模型,内循环依据更新后的关节模型优化控制参数,经过数代学习逐渐使控制性能达到最优.该方法学习效率高,且相较于传统PID方法,对环境的适应能力更强,能有效提高复杂条件下机械臂关节的控制精度.数值仿真结果证明了该方法的有效性.
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取