欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

对图像网络适应现实:隐式低秩转换的可伸缩性领域的适应

Towards Adapting ImageNet to Reality: Scalable Domain Adaptation with Implicit Low-rank Transformations
作者:Erik Rodner, Judith Hoffman, Jeffrey Donahue, Trevor Darrell, Kate Saenko 作者单位:Electrical Engineering and Computer Sciences University of California at Berkeley 加工时间:2013-11-24 信息来源:EECS 索取原文[10 页]
关键词:隐式约束;互联网图像;基于转换
摘 要:In this paper, we show how to learn transform-based domain adaptation classifiers in a scalable manner. The key idea is to exploit an implicit rank constraint, originated from a max-margin domain adaptation formulation, to make optimization tractable. Experiments show that the transformation between domains can be very efficiently learned from data and easily applied to new categories. This begins to bridge the gap between large-scaleinternet image collections and object images captured ineveryday life environments.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服