欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于CEEMDAN与奇异值分解的往复机械故障诊断方法研究
作者:别锋锋;徐鹏青;裴峻峰;张仕佳; 加工时间:2019-11-21 信息来源:噪声与振动控制
关键词:振动与波;;往复机械;;总体经验模态分解;;奇异值;;支持向量机
摘 要:往复机械振动信号非常复杂,通常存在较强的非平稳、非线性特征,使得对其进行振动信号分析、故障识别存在困难。对此提出一种基于改进的总体经验模态分解(CEEMDAN)与奇异值结合的故障特征识别方法,对原始信号进行CEEMDAN分解,得到本征模式函数的奇异值,将得到的奇异值作为特征向量输入支持向量机进行特征分类,从而实现故障模式的识别。通过对实验室模拟故障与往复泵动力端故障模式识别实例分析来论证方法有效性。研究结果表明,该方法适用于提取往复机械振动信号冲击特征和多故障模式识别。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服