欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

无匙加密的SIMPL系统和原始安全性

SIMPL Systems as a Keyless Cryptographic and Security Primitive
作者:Ulrich Ruehrmair 作者单位:Department for Electrical Engineering and Information Technology, TU Muenchen Fraunhofer Institute for Secure Information Technology Munich, Germany 加工时间:2013-12-13 信息来源:科技报告(other) 索取原文[26 页]
关键词:电子信息;信息安全;无匙加密;SIMPL系统
摘 要:

We discuss a recent cryptographic primitive termed SIMPL system,where the acronym stands for SIMulation Possible, but Laborious. Like Physical Unclonable Functions (PUFs), SIMPL systems are disordered, unclonable physical systems with many possible inputs and a complex input-output behavior. Contrary to PUFs, however, each SIMPL system comes with a publicly known, individual numeric description that allows its slow simulation and output prediction. While everyone can determine a SIMPL system's output slowly by simulation, only its actual holder can determine the output fast by physical measurement. This added functionality allows new public key like protocols and applications. But SIMPLs have a second, perhaps more striking advantage: No secret information is, or needs to be, contained in SIMPL systems in order to enable cryptographic security. Neither in the form of a standard digital key, nor as secret information hidden in the random, analog features of some hardware, as it is the case for PUFs. The security of SIMPL systems instead rests on (i) an assumption regarding their physical unclonability, and (ii) a computational assumption on the complexity of simulating their output. This provides SIMPL systems with a natural immunity against any key extraction attacks, including malware, side channel, invasive, and modeling attempts. In this manuscript, we give a comprehensive discussion of SIMPLs as a cryptographic and security primitive. Special emphasis is placed on the different cryptographic protocols that are enabled by this new tool.


© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服