欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

电力系统动态模拟的高性能计算

High Performance Computing for Power System Dynamic Simulation
作者:Siddhartha Kumar KhaitanJames D. McCalley 作者单位:Electrical and Computer Engineering, Iowa State University, Iowa, USA;Electrical and Computer Engineering, Iowa State University, Iowa, USA 加工时间:2013-12-29 信息来源:科技报告(Other) 索取原文[27 页]
关键词:电力系统;动态
摘 要:High-speed extended term (HSET) time domain simulation (TDS) is intended to provide very fast computational capability to predict extended-term dynamic system response to disturbances and identify corrective actions. The extended-term dynamic simulation of a power system is valuable because it provides ability for the rigorous evaluation and analysis of outages which may include cascading. It is important for secure power grid expansion, enhances power system security and reliability, both under normal and abnormal conditions. In this chapter the design of the envisioned future dynamic security assessment processing system (DSAPS) is presented where HSET-TDS forms the core module. The power system is mathematically represented by a system of differential and algebraic equations (DAEs). These DAEs arise out of the modeling of the dynamic components such as generators, exciters, governors, automatic generation control, load tap changers, induction motors, network modeling and so on. To provide very fast computational capability within the HSET-TDS, this chapter motivates the need for high performance computing (HPC) for power system dynamic simulations through detailed modeling of power system components and efficient numerical algorithms to solve the resulting DAEs. The developed HSET-TDS is first validated for accuracy against commercial power simulators (PSSE, DSA Tools, Power-World) and then it is compared for computational efficiency. The chapter investigates some of the promising direct sparse linear solver for fast extended term time domain simulation and makes recommendation for the modern power grid computations. The results provide very important insights with regards to the impact of the different numerical linear solver algorithms for enhancing the power system TDS.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服