关键词:故障诊断;振动信号;总体平均经验模态分解;相关系数;支持向量机
摘 要:针对发动机缸盖振动信号的非线性非平稳特征,提出一种总体平均经验模态分解(EEMD)和支持向量机相结合的信号分析及故障诊断方法,该方法利用EEMD算法以及IMF序列和原始振动信号之间的相关系数,有效放大故障诊断特征向量的差异。对原始振动信号进行EEMD分解,得到各阶特征模态函数(IMF),求各阶IMF分量对应于原始信号的相关系数并组成故障分类特征向量。分别将IMF相关系数法和IMF能量分布法得到的特征向量作为输入,建立BP神经网络和支持向量机,判断发动机工作状态和故障类型。分析表明,对IMF求相关系数的方法简便易行,能有效放大不同工况下特征向量的差异,结合支持向量机能够对既定机型的配气机构和点火系常见故障进行准确识别。